6,654 research outputs found

    The Catholic Physician\u27s Responsibility for School Health Supervision

    Get PDF

    Analysis of OGO-6 observations of the 0 I 5577A tropical nightglow

    Get PDF
    Atomic oxygen green line data from the horizon scanning photometer on OGO-6 was examined. Unfolding the satellite data from the tropical F-region yields altitude and latitude variations of the O(1S) emissions. The spatial variations of the tropical F-region electron density are then calculated by assuming dissociative recombination and using a model atmosphere. Where comparisons to ground-based data are possible the results are good. Thus, the satellite observations constitute a form of topside sounding of the ionosphere below the F-peak and provide synoptic data about this portion of the ionsphere otherwise impractical to obtain

    Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice

    Get PDF
    Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone’s capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both p\u3c0.001). Loaded bones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure

    Agency theory reconsidered

    Get PDF

    The Sedimentary Petrography of the Oil and Gas Producing Horizons in Montana

    Get PDF
    Montana is an excellent oil province, as oil and gas are pro­duced from a wider range of beds in the geologic section than in any other district in the United States. (1,864) Commercial fields have been developed in Ordovician, Devonian, Mississippian, Pennsylvanian, Jurassic, Lower Cretaceous, and Upper Cretaceous. It is believed that by describing the physical characteristics of the producing horizons, and by placing this information in one compact volume, a better under­standing of oil and gas occurrence in Montana may be gained

    The Person as a brain microparticle

    Get PDF

    Radionuclide measurements by accelerator mass spectrometry at Arizona

    Get PDF
    Over the past years, Tandem Accelerator Mass Spectrometry (TAMS) has become established as an important method for radionuclide analysis. In the Arizona system the accelerator is operated at a thermal voltage of 1.8MV for C-14 analysis, and 1.6 to 2MV for Be-10. Samples are inserted into a cesium sputter ion source in solid form. Negative ions sputtered from the target are accelerated to about 25kV, and the injection magnet selects ions of a particular mass. Ions of the 3+ charge state, having an energy of about 9MeV are selected by an electrostatic deflector, surviving ions pass through two magnets, where only ions of the desired mass-energy product are selected. The final detector is a combination ionization chamber to measure energy loss (and hence, Z), and a silicon surface-barrier detector which measures residual energy. After counting the trace iosotope for a fixed time, the injected ions are switched to the major isotope used for normalization. These ions are deflected into a Faraday cup after the first high-energy magnet. Repeated measurements of the isotope ratio of both sample and standards results in a measurement of the concentration of the radionuclide. Recent improvements in sample preparation for C-14 make preparation of high-beam current graphite targets directly from CO2 feasible. Except for some measurements of standards and backgrounds for Be-10 measurements to date have been on C-14. Although most results have been in archaeology and quaternary geology, studies have been expanded to include cosmogenic C-14 in meteorites. The data obtained so far tend to confirm the antiquity of Antarctic meteorites from the Allan Hills site. Data on three samples of Yamato meteorites gave terrestrial ages of between about 3 and 22 thousand years
    • …
    corecore